Uniwersytet Ekonomiczny

George Matysiak

Introduction to Portfolio Theory October 19th, 2015

Agenda

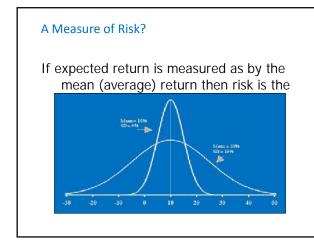
- MPT, risk and return
- Diversification
 - ➢Naïve risk reduction
 - Efficient Frontier

Risk and return

- A key investment indicator is expected total return
- A second important investment indicator is risk
- Risk is a measure of the probability of expected return not being achieved
- Traditional measure of risk is variance or standard deviation of expected returns

What is Risk?

- The possibility that *actual* return will differ from *expected* return
- Uncertainty in the distribution of possible outcomes



Variance, Standard Deviation and Correlation Statistics for Portfolio Inputs

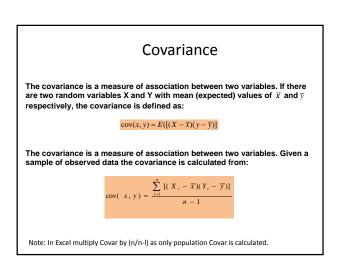
- Expected Return
- Variance/Standard Deviation
- Covariance/Correlation

Variance and Standard Deviation

The standard deviation of a data set measures the spread or dispersion of the data. The square of this is known as the *variance*. Given a sample of data, x_i , in order to obtain an unbiased estimate of the underlying population variance, s_i^+ , from which the sample was drawn, the following formula is used:

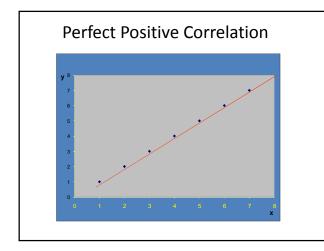
where $\overline{x}\,$ is the mean (average) of the data.

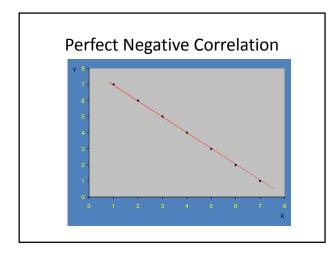
The square root of this is known as the standard deviation.

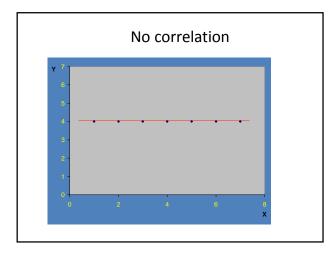


Correlation	
The value of the covariance depends on the units in which X and Y are measured i.e. it is scale dependent. To correct for this it is divided by the standard deviations of the two variables and this ratio becomes a pure number. The resulting ratio is known as the <i>correlation coefficient</i> , $r_{\rm p}$.	,
So, the correlation coefficient, 7,, is found from:	
$r_{xy} \mathbb{N} \frac{\operatorname{cov}(x, y)}{\dagger x^{\dagger} y}$	
where, \uparrow_{a} and \uparrow_{a} are the sample standard deviations of x and y respectively.	
It can be shown that the correlation coefficient lies in the interval -1 to +1 i.e. $> 1 \ \% r_{xy} \ \% < 1$	

- The strength of a relationship between two variables is measured by the coefficient of correlation, r
- Perfect positive correlation occurs when r = 1
- Perfect negative correlation occurs when r = -1
- No correlation occurs when r = 0







MPT

- Over the last 20 years or so practitioners in property markets have begun to look at portfolios in a more structured/formal manner
- Whilst it is generally acknowledged that diversification is desirable, purchases and sales were (are) undertaken on a deal-by-deal basis without formally tracing through the wider implication/impact on *diversification* within the portfolio
- The essential concept of portfolio theory is that the risk of any individual asset *as a component* of a portfolio is different from its risk in isolation

MPT

Portfolio theory concerns itself with focussing attention on the risks of a portfolio, which is regarded as an entity

MPT

- In general, the risk of a portfolio will be less than the average of the individual components. This stems from individual assets being less than perfectly correlated
- MPT techniques allow portfolios to be managed in a way that the risk of a portfolio can be controlled. It deals with the selection of *optimal portfolios* by rational risk-averse investors
- The objective in constructing portfolios is to determine the appropriate combination (weights) of assets which yields a desired risk and return trade-off

Assumptions about investors' preferences

We will assume that investors

 prefer mean/expected return
 prefer lower standard deviation in return
 do not care about other things

• This means that standard deviation/variance is the relevant measure of risk

Basic idea...

- Selecting assets which have low correlation is a central aspect of Modern Portfolio Theory The objective of MPT is either
- - ➢ for a given level of risk, to achieve the maximum return

or

- \succ for a given return, to achieve the minimum risk
- The output of the analysis is the proportion of funds to be invested in each asset, and a measure of the expected return and the risk

Mean-Variance Framework **Basic Measures**

- Requirement:
 - expected return
 - variance
 - covariance/correlation

How do we obtain these numbers ?

Diversification

• Risk reduction is a well understood concept - Don't put all your eggs into one basket: diversify risk!

Diversification

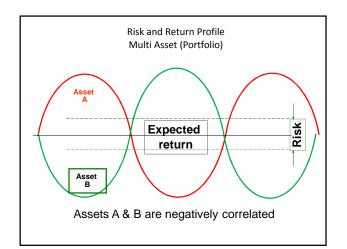
One of the few areas in economics where you get a 'free lunch' i.e. less risk without necessarily reducing expected return!

The mean/variance hypothesis

- More return is better than less return
- Less risk is better than more risk
- Investment A is better than investment B if, and only if, its expected return is higher and its risk is equal to or less than that of investment B
- However, a more rational approach may be to combine, *holding both A and B*

Portfolios

- Combining several securities into a portfolio can reduce overall risk
- How does this work?



Diversification

- Investing in more than one security to reduce risk
- If two stocks are perfectly positively correlated, diversification has no effect on risk
- If two stocks are perfectly negatively correlated, the portfolio is perfectly diversified

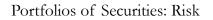
Portfolios of Securities: Return

- Investors' opportunity set is comprised not only of sets of individual securities but also combinations, or *portfolios*, of securities
- The achieved return on a portfolio is the weighted average of returns on component portfolios/securities:

$$R_{pt} = \sum_{i=1}^{N} w_i R_{it}$$

• The expected return is also a weighted average

 $E(R_{pt}) = \sum_{i=1}^{N} w_i E(R_{it})$

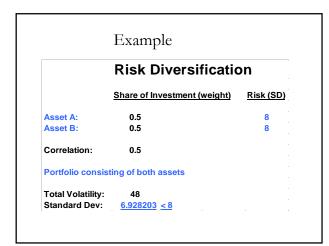


However, the standard deviation of a portfolio is NOT simply a weighted average of securities standard deviations. We also need to account for co-variances

- Example with 2 risky securities X and Y

• Will the portfolio s.d. be higher or lower than a simple weighted average?

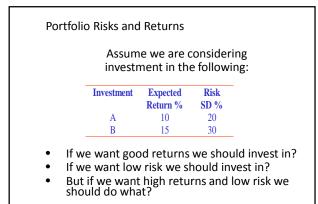
 $\uparrow_{p}^{2} = w_{x}^{2} \uparrow_{x}^{2} + w_{y}^{2} \uparrow_{y}^{2} + 2w_{x}w_{y}\text{Cov}(xy)$ $\dagger_{p}^{2} = w_{x}^{2} \dagger_{x}^{2} + w_{y}^{2} \dagger_{y}^{2} + 2w_{x}w_{y} \dagger_{x} \dagger_{y} \cdots_{xy}$

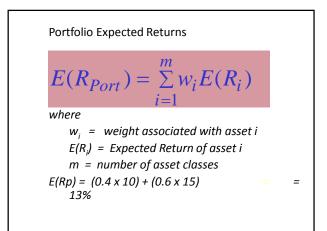


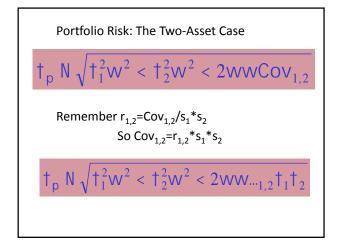
Example	e (continued)
Risk Div	versification
Different corr	elation values
Correlation	Portfolio Risk
	(SD %)
-1	0
-0.75	2.828427125
-0.5	4
-0.25	4.898979486
0	5.656854249
0.25	6.32455532
0.5	6.92820323
0.75	7.483314774
1	8

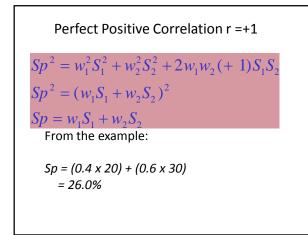
Observation

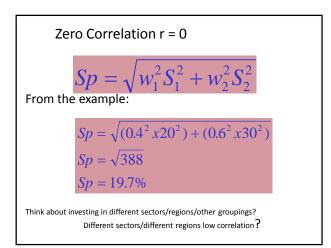
Combinations of less than perfectly correlated assets result in risk reduction

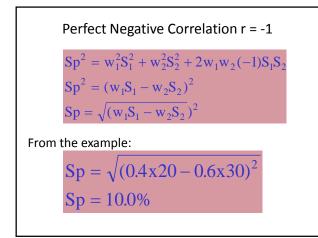


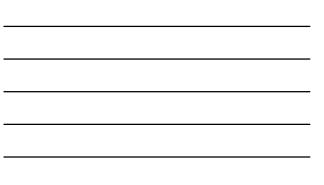












Anorak's corner: portfolio risk reduction

• For N securities, in general, the formula is:

$$\dagger_{p}^{2} = \sum_{i=1}^{N} w_{i}^{2} \dagger_{i}^{2} + \sum_{i=1}^{N} \sum_{\substack{j=1\\i\neq j}}^{N} w_{i} w_{j} \dagger_{ij}$$

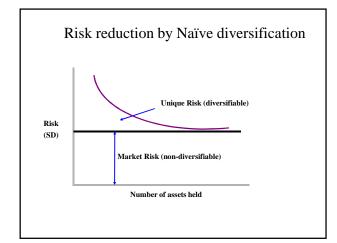
- The first term is a square weighted average of securities variances; the second term captures N(N-1) covariance terms,
- Intuitively, what happens to the portfolio's variance as N gets large?

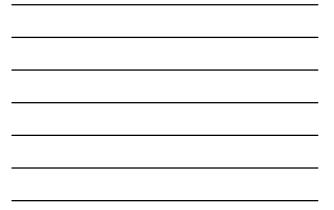
Anorak's corner: portfolio risk reduction

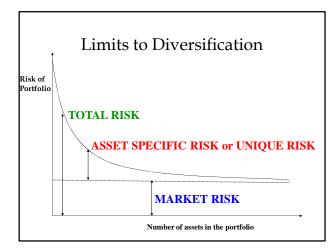
• The variance of an equally-weighted portfolio is given by:

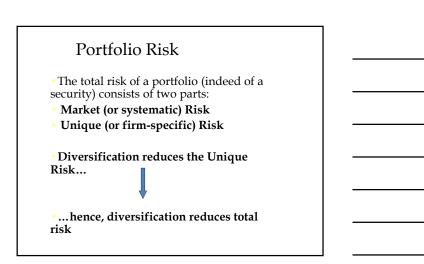
$$\uparrow \frac{2}{P} = \frac{1}{N} \left[\frac{Average}{Variance} \right] + \left\{ 1 - \frac{1}{N} \right\} \left[\frac{Average}{Co \text{ var iance}} \right]$$

When the number of securities in the portfolio increases, what matters is the covariance term!
In the case of a well-diversified portfolio, the variance will be equal to the average covariance between the individual components









Some risk can be diversified away and some cannot

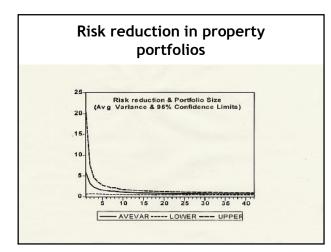
- *Market risk* (*systematic risk*) is *nondiversifiable*. This type of risk cannot be diversified away
- Asset-unique or property unique risk (*unsystematic risk*) is *diversifiable*. This type of risk can be reduced through diversification

Partitioning risk

- Total risk (volatility) can be decomposed into components
 - -returns accounted for by common factors
 - -idiosyncratic component

Sector	Average correlation between properties			
	1988-1992	1993-1997		
Retail	0.134	0.144		
Office	0.213	0.128		
Industrial	0.228	0.098		

Sector	Average co	rrelation between	
	properties		
	1988-1992	1993-1997	
Retail - Office	0.129	0.130	
Retail - Industrial	0.132	0.113	
Office - Industrial	0.213	0.115	



		sect	or						
ercentage reduction in risk assuming equal levels of investment in each									
No. of	% of reduction in risk					lo. of %			
Properties	Retail	Office	Industrial	Portfolio					
1	0	0	0	0					
2	26	26	27	26					
3	36	37	38	37					
4	42	43	44	43					
5	46	47	49	48					
10	56	57	59	57					
20	61	63	65	63					
30	63	65	67	65					
40	64	66	68	66					
50	64	66	69	67					
100	66	68	70	68					
1000	67	69	72	69					

No of Prop	s Office	Retail	Industrial
1	0.11	0.08	0.07
2	0.20	0.14	0.13
3	0.28	0.20	0.18
4	0.34	0.25	0.23
5	0.39	0.29	0.27
10	0.56	0.45	0.42
20	0.72	0.62	0.59
30	0.79	0.71	0.69
40	0.84	0.77	0.75
50	0.86	0.80	0.79
100	0.93	0.89	0.88
200	0.96	0.94	0.94
1000	0.99	0.99	0.99

Fund managers rely on either real estate *type* or *location* as the dominant criterion for portfolio construction

Diversification

- Sector and regional diversification the best overall
- But sector diversification closest to overall 'efficient frontier' (provides the best riskreturn trade-off)
- Identification of more refined sectors and regions will offer the greatest diversification benefits!

Portfolio risk and return

- Selecting assets which have low correlations is a central aspect of Modern Portfolio Theory
- The objective of MPT is either

 for a given level of risk, to achieve the maximum return
 - or
 - for a given return, to achieve the minimum risk
- The output of the analysis are the proportions to be invested in each asset, providing a measure of portfolio expected return and the risk

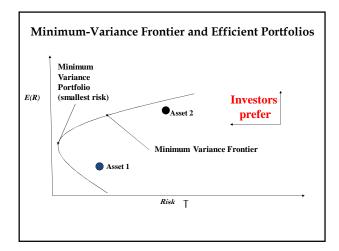
Efficient Portfolios

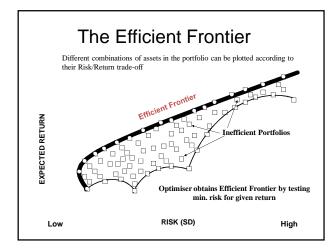
- Understanding the return and risk attributes of individual securities and the correlations between securities allows us to construct *efficient* combinations which attempt to "reduce risk as much as possible for a given level of expected return." How do we do it?
- We work in a mean-variance framework

 assumes all investors prefer higher returns, all else equal
 assumes all investors prefer lower risk, all else equal

Delineating Efficient Portfolios

- Rational approach to construction of portfolios
- An efficient portfolio maximises return for a given level of risk or minimises risk for a given level of return
- Investors will seek optimal risk/return combinations
 = efficient portfolios
- Efficient portfolios lie on the efficient frontier
- The decision of which combination of risk and return to choose along the efficient frontier depends on the investor's trade-off between risk and return





Efficient frontiers

- Some possible combinations of assets are sub-optimal: it is possible to get better risk/return combinations
- By eliminating the sub-optimal points it is possible to construct the *efficient frontier*
- The decision of which combination of risk and return to choose along the efficient frontier depends on the investor's trade-off, or indifference, between risk and return

Finding the Efficient Set

- Required inputs are:
 - expected return
 - variance/standard deviation
 - covariance/correlation
- In practice, a computer is used to perform the numerous mathematical calculations required.
 Technically, this is quadratic programming problem. It is easily solved using, for example, the *Solver* facility in Excel (Computer workshop!)

Portfolio Input Measures

- Historic data
 - long run data. Issues?
 - performance under different economic conditions: Use sub-period analysis?
 - are past averages a good indicator of the future?
- Scenarios
 - test different future "states"
 - see Matysiak JPF Vol. 3/4 1993 pp68-75
- Forecasts
 - Models / Capture 'Dynamics' / Costs / Accuracy?

	-2006	(source:	Hoesli/L	lzieri)		
Asset	Retu	rnRisk	Risk /	Return	l	
Shares	12.1		15.25		0.79	
Gilts	9.4		5.11		1.83	
Property11.1		4.59		2.42		
Correlations:						
	S	hares	Gilts	Proper	rty	
Share	es 1	.000	.350	-0.0		
Gilts			1.000	-0.1	15	
Prope				1.00		

Investment question

- Let's say that you decide to invest in a *diversified* equity portfolio with average risk. You obtain a return that was 20%.
 - is this satisfactory?
- Suppose the FTA All-Share Index has produced, for the same period, a total return of 15%.

Can you say that the fund, for this period, had a superior return?

Uniwersytet Ekonomiczny

George Matysiak

Introduction to Portfolio Theory October 19th, 2015